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The problem of the non-linear unsteady creep of the bending deformation of an ice sheet which partially covers a hydraulic 
foundation is considered within the framework of the hypothesis of plane sections. In a plan view the sheet is a strip of tinite 
width and length with a :amgle clamped end. This may be shore ice close to the wall of a hydroelectric structure or a plate which 
has been speciahy sawn out in an ice sheet for natural experimental investigation. A frequently adopted relationship [l, 21 between 
the strain, creep and stress which is, to some degree, under the sign of a Volterra-type time operator with a non-difference kernel 
is used to describe the rheology of the ice. A non-linear integrodifferential equation for the bending moment in a sheet on a 
hydraulic foundation is obtained which is solved by expansion in a series in a certain small time parameter and, subsequently, 
numerically along a coordinate by the monotonic sweep method. The deflection of the sheet is also found. Characteristic cases 
of the change in the bending moment and the deflection along the length of the sheet with time are considered. Copyright 8 
1996 Elsevier Science Ltd. 

1. Let a sheet of ice of thickness h, width 1 > h and length L > I lie on a hydraulic foundation which 
we shall simulate with a Fuss-Winkler foundation [3] with a bedding parameter k = pg, where p is the 
density of the liquid andg is the acceleration due to gravity. One of the ends of the sheet is clamped 
along its length and the other is loaded with a transverse force F and a bending moment G (Fig. 1). 
We shall assume that the sheet does not become detached from the foundation under the action of 
these loads. 

Natural ice is a solid with an extremely complex multiphase structure [4]. Apparently, it is impossible 
to describe its deformation, as a continuous medium, using a single universal law. Here, it is proposed, 
in connection with the study of the non-linear unsteady creep of the flexural deformation of an ice sheet, 
in the case of a uniaxial stressed state, to use the relation [l, 21 

&Z- “E + j B(f,T) 01 olrn”-‘dr 
7. 

(1.1) 

where E and o are the strain and the stress, E is Young’s modulus, t is the time, T. is the moment of the 
load, B(t, 2) and m are a function (the creep kernel) and the non-linearity parameter (min,, ,B(t, 2) > 
0 and m > 1) determined experimentally. It follows from (1.1) that the instantaneous deformation of 
the ice is assumed to be elastic. In order to improve the accuracy of the model (l.l), E is permitted to 
depend on t. 

The relative elongation of a filament of the sheet, located in a section at a distance2 from the neutral 
axisisa = z/R (R is the radius of curvature of the neutral plane). In the case of small deflection of the 
sheet w, it is possible to put E = zw:lwith sufficient accuracy. When this is taken into account, we can 
write relation (1.11) in the form 

a% 
Ez s =<T+ Ej B(t,~)olol~-‘dz 

7. 

Regarding the dependence of cr on z (I z I G h/2), we can assert that 

(l-2) 

(1.3) 

and the function a(1 z 1) increases monotonically as I z 1 decreases from a value of a(h/2) = m-l to a 
value of a(0) = 1 (when E = 00, as has been shown in [5], a = m-l). 
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z 

Fig. 1. 

Let fl  be the area of the cross-section of the sheet. This is a rectangle with sides h and L On multiplying 
(1.2) byz  d ~  and integrating over the cross-section, we find 

~2 w t 
EI~xe =M+E I B(t,x)dxJ alal'-lzaa 

(1 = Ja z2dF~= 1h312' M = ~ ozdl"~] 

(1.4) 

where I is the moment of inertia of the cross-section and M is the bending moment in a certain cross- 
section of the sheet. Since, in some cross-section or other, 6 and z always have the same sign or opposite 
signs, the inner integral in (1.4) is equal either to J or to -J, where 

J = I l a I'1 zl d a  (1.5) 
fl 

Let m -I + n -1 = 1. Then, by virtue of Hflder 's  inequality [6] 

I g l =  o I l o l l z l d n  . q(~ lal'lzldn] '/" (1.6) 

I IMI" ~ :, I _ (  4 ,),n-I 

Hence, a lower estimate has been obtained for integral (1.6). 
We shall use Favard's inequality [6] to obtain an upper estimate 

| b 
_ ]" [f(x)lrdx ~< 

b a 
], p+l ~ f(x) dx (1.7) 

wherep > 1 andf(x) is a non-negative continuous convex (f'(x) < 0) function in [a, b] (Favard's inequality 
is given in [7] with an error which subsequently has an effect on the accuracy of the upper estimate of 
the integral (1.5). The corrected result is given here.) We note that 

fl 0 

where m > 1 and 1 6 I, like the function zl, is convex by virtue of (1.3). Then, from (1.7) we have 

l lMl. ' 1 2" (4~'-' 
J <- c7 c7 = m + 1 ~ 7 )  (1.9) 
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So, when account is taken of relations (1.6) and (1.9), we can approximately put 

J-C'IMI', c'=(~" +ci')/2 (1.10) 

When I ~< m <~ 3 we have 1 ~< C*IC( 'n ~ 1.5; 1 <~ C*lCf ~ <- 0.75. On substituting expression (1.10) 
into (1.4), we obtah~ the following approximate equation for describing the flexural deformation of an 
ice sheet under conditions of non-linear unsteady creep 

~2w --- M + C'E i B(t,x) MI M ["-'dx (1.11) 
"¢. 

Note that an equation similar to (1.11) was obtained without proof in [5]. 

2. From the side of the hydraulic foundation, a load q(x, t) = ldw~, t) which is distributed along the 
length acts on the sheet. At the same time, we know [3] that ~Mlar '  = -q(x, t), and therefore 

klw(x, t) = --02M/'dx 2 (2.1) 

Substituting (2.1.) into (1.11), we obtain an integro-differential equation for the bending moment 
M(x,t)  

3"M +k_.~.t M+.kIC" i B(t,x)UlMI"-'d'¢=O 
3x 4 E1 ! ~. (2.2) 

The boundary conditions are 

M=--G, M ' = - F  (x=0)  (2.3) 

w = w ' = 0  ( x = L )  (2.4) 

By virtue of (2.1), the latter conditions can also be written as follows: 

M " = M " ' = O  (x=L)  (2.5) 

Thus we have 15: I. (2.2) with boundary conditions (2.3) and (2.5). By solving it, we can then find w 
using formula (2.1). 

For a sufficiently old ice sheet the creep kernel B(t, x) may be assumed to be a difference kernel [1] 
and, on the basis of  experimental data [4], we can assume that 

B(t - x) - B.. + B0expi-g(t - x)] 

Allowing for (2.6), we change in (2.2) to the reduced time 

= l - e - ~ t ( 4 ~  [0,1)), O = l - e - ~ '  ( 0 ¢  [0,1)) 

Equation (2.2) then takes the form 

rM MIMt'-' ,,IMI'-' 
. u  ~ + ~  l .  L o l - 0  ao+noo-~)I  o (1 -0 )  2 

We shall seek a solution of Eq. (2.8) in the form of the series 

M(x,~)-- '£ n,(x)~' 
i--0 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

On substituting (2.9) into (2.8), carrying out a number of transformations and equating the expressions 
in like powers of ~, we arrive at the following system of successively solvable linear differential equations 
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M (4) + J! M 0 = 0 

M~ s> + J~M~ = - (22S~ + J3r~) (i ~> l) (2.10) 

Here 

kl kIC'B.  

.Ii = ~ ,  .I~ = tIt 
1 i-I 

S i = -  E f,,, (i ~ 1), 
I m-O 

1 ,-I 
= ~, m r ,  n (i ~, 2) Ti i ( i -  1) ,~1 

, J 3  = klC'B° 

T~ = fo (2.11) 

Expressions for fro (m = 0, 1 . . . . .  4) are given in [7]. It is characteristic that fro depends on all M0, 
M1 . . . . .  Mm-l. The boundary conditions for Eqs (2.10) have the form 

Mo=-G, M~=-F (x=O), M~'=M~'=O (x=L) 

Mi=M:=O (x=O,i ~ I), M~=M~=-O (x=L,i >~ I) (2.12) 

For M0 and w0, we have the classical elastic-instantaneous solution 

M 0 = • 1~ (A 0 cos~x + B o sin ~x) + e-lk(Co cos~x + D o sin 13x) 

w0 = - [elk (B0 cosl~x - A 0 sin I~x) - e - ~  (D O cos~x - C 0 sin [~x)] (2.13) 

x [ 2 cos ~L + (1 + • "21g) sin I~L] -I 

x [4e -21u" cos 215/- + (1 + e 41u')2 ]-t 

The functions Mi and wi, when i I> 1, were found numerically using the standard scheme which arises 
in the approximation of  boundary-value problems for fourth-order ordinary differential equations. The 
methods of  Gaussian elimination and an algorithm for monotonic sweep [8] were used. The program 
was written in C language. 

3. To illustrate the problem, we will now present some examples. The following data, based on 
experimental material [4], were inputted into the orogram: E = 4 x 109 kg/ms2; B 0 = 84 × 10 --8 (ms2/kg)ms-1; 
B.. = 5.6 x 10 "~ (msL/kg)'s-1; It = 3 x 10 -2 s -r, m = 1.72. In addition, we took p = 103 kg/m'J; g = 
9.81 m/s2; h = 0.25 m; 1 = 1 m; G = 0 kg2/s2; F = 500 kg/s 2. All of  the results subsequently presented 
are for the case when sixth-order terms were retained in (2.9). Here, it was numerically established 
that this number  of terms is sufficient for t - 200 s. 

1. Let the sheet have a finite length L = 10 m. Curves for the bending moment M (kg2/s 2) and the 
deflection w (m) as a function of the change in the x coordinate at fixed values of  the time are shown 
in Fig. 2. Curves 1--4 correspond to time t = 0, 30, 60 and 200 s. Curves 1 illustrate the elastic- 
instantaneous solution of  the problem and curves 4 correspond to the solution having reached a steady 
state. All the curves increase monotonically. It is most probable that the sheet breaks at the damped  
end, that is, a t x  = 10 m. 



Non-linear unsteady creep of an ice sheet on a hydraulic foundation 681 

10 2 X W, m 

10 z x w, m 

-÷ 

. s , ~  

I 

S /  A f / :  10 -3 X M, It~ mZ/s z /-/: 

/: N:-- 
0 5 lOx, m 

i 

Fig. 2. Fig. 3. 

2. Let the sheet be semi-infinite. As above, the curves for M(kg m2/s 2) a n d  w (m) are shown in Fig. 
3 as a function o f x  at fixed instants of time which are the same as those in Fig. 2. The form of all the 
curves changes and they are not monotonic. The maximum bending moment is attained at x = 5.6 m. 
This is the most probable point for the sheet to fracture. 

3. Let  the sheet be semi-infinite and heavy. The picture will then be similar to that shown in Fig. 3 
with the sole difference that w --> hp+/p when x --) ~. Here,  p. is the density of ice. 
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